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A-law/μ-law Dynamic Range Compression Deconvolution 
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Kierstead1 

 

1Solid State Scientific Corporation, Hollis, NH 03049 
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Abstract: In this paper the A-law/μ-law Dynamic Range Compression algorithm used in 

telecommunication systems is proposed for the first time for nonlinear Dynamic Range 

Compression image restoration of blurred signals embedded in very high noise environment. 

Our simulation results demonstrate that the dynamic range compression image deconvolution via 

the A-law/μ-law outperforms image restoration based on the well-established image restoration 

filters that have been used for the last fifty year such as Wiener filter and Inverse filter. The 

deconvolution orders have been analyzed using the nonlinear transform method.   
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Introduction 

Dynamic Range Compression/Expansion known as companding (compressing-expanding) is a 

well-established principle for recovering the signal embedded in high noise. Dynamic Range 

Compression accompanied with conventional image restoration might be useful in recovering 

images embedded in a high noise environment. Dynamic Range Compression/Expansion 

nonlinearity, when applied to a noisy signal, improves the signal to noise ratio in areas where the 

signal is low compared to the noise and reduces the SNR in areas where the signal is higher than 

the noise level. This principle has been used for improving the quality of acoustic signals in the 

50’s and is extensively used for noise reduction in tape recording which is limited by “tape hiss”, 

which is high frequency random noise. Noise reduction systems like the “Dolby” and “dbx” help 

to solve this problem by pre-emphasizing (compression) the high frequencies before recording 

onto tape in order to make them higher in amplitude than the tape hiss noise with which they 

compete and then upon playback, a matched de-emphasis filter (expansion) is employed. These 

noise reduction systems are amplitude sensitive so that only soft high-frequency sounds are 

emphasized. And the matched de-emphasis filter scales the high frequencies to their right 

position with the other recorded signals1. 

Dynamic Range Compression/Expansion technique has also been used in telecommunication 

systems using a nonlinear element for simultaneously compressing the data (reducing the 

signal’s dynamic range for uniform quantization process), enhancing the SNR and at the receiver 

end expanding the data through the inverse of the same nonlinear element 2,3.  

The use of Dynamic Range Compression techniques and power-law nonlinear transfer functions 

are not new for image processing purposes. Techniques such as contrast stretching4 which 
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compress the data (by a nonlinear transfer function) below a threshold value to darken the image 

for higher contrast, image enhancement using gray-level nonlinear transformation functions (like 

logarithmic transformation4-6 and power-law transformation4) and simultaneous gray-level 

compression and contrast enhancement or multiplicative to additive noise conversion using 

homomorphic nonlinear filtering has been examined4,6.      

In this paper, Dynamic Range Compression image deconvolution via both the A-law and the μ-

law encoders is introduced for the first time. In image deconvolution of a noisy and blurred 

signal, dynamic range compression performs the following dual functions:  (1) Enhances the 

high frequencies of the degraded signal relative to the low frequencies, reducing the blur; (2) 

Enhances the signal-to-noise ratio in particular at high frequencies even where the signal-to-

noise ratio is very low, further improving the finer details in the image. Such an approach 

overcomes even the optimal Wiener filter4 limitations. These limitations are described in the next 

section. Several forms of distortion functions with tested input images are studied and simulated. 

The distortion functions such as motion distortion, atmospheric turbulence and misfocusing 

aberration is examined. A human face (Lena) is utilized as an input image. The joint spectra 

orders for this deconvolution technique are analyzed using the nonlinear transform method3: both 

A-law and the μ-law nonlinear functions are firstly expanded to their power-law nonlinear 

saturation functions, then the contribution of each order has been calculated and finally all the 

orders contributions have been combined.  

Inverse and Wiener Filters 

Inverse filtering4 is the simplest linear approach for restoring the distorted image. One can 

compute the estimated restored image by dividing the Fourier transform of the degraded image 
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G(u, v) by the Fourier transform of the aberration function H(u, v) as stated in the following 

equation:  

Where G(u, v) is the Fourier transform of the distorted image plus noise,  

Equation 1 tells us that even if the distortion function is known, the undegraded image can not be 

recovered because of having noise N(u, v) in the image. Because the noise is random and the 

Fourier transform of a random function is random and unknown, therefore N (u, ν)/H (u, ν) ratio 

could easily dominate the estimated recovered image ),( vuF
)

and create a noisy undegraded 

image and if the noise level is high the recovered image may not be visible. The Inverse filter, 

for most of blur functions, is a highpass filter and because noise spreads over a broad-band of 

frequencies therefore after Inverse filtering the noise will be enhanced in high frequencies. To 

overcome this problem the Wiener filtering method comes into the consideration. This nonlinear 

approach incorporates both the degradation function and the statistical characteristics of noise 

into the restoration process. This method considers images and noise as random processes. The 

Wiener filter expression could be shown as7 

 

where H(u ,v) is the distortion function, H*(u, v) is the complex conjugate of H(u, v), |H(u, v)|2, 

|F(u, v)|2 and |N(u, v)|2 are the power spectrum of the distortion function, the undegraded image 

and the noise respectively.  

Accordingly, the Wiener Filter consists of two filters: (a) the proportionality filter (the first 

term), (b) the inverse filter (the second term). The inverse filter, as it was discussed before, is the 

best filter for image restoration in a non-noisy environment. The proportionality filter represents 
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the ratio of the clean blur signal power spectrum to the total power spectrum. For a non-noisy 

environment, the proportionality filter has 100% transmitivity of the input signal, while in a very 

high noise this filter transmits nearly 0% of the input signal. Therefore the process behind the 

Wiener filter consists of two stages: first the noise filtering via the spectrum proportionality 

filter, and second the signal deblurring via the inverse filter. In this process for regions when 

SNR is low, the signal in this part of the spectrum will be lost. Therefore, the Wiener filter is not 

effective in harsh operating conditions such as imaging on a rainy day or in a sandstorm. When 

the noise is much higher than the signal across the full spectrum, both the noise and the signal 

are removed. However, our proposed dynamic range compression deconvolution is a new signal 

recovery technique that can retrieve the signal in a high noise environment while outperforming 

both inverse and Wiener filters.  

Architecture 

The architecture of image compression nonlinear joint Fourier processor via A-law/μ-law is 

shown in Figure 1. This figure shows a joint Fourier processor setup which uses a single input 

plane for both the reference (r) and the signal (s) images and jointly Fourier transforms the input 

via a lens. The joint Fourier spectrum then is captured by a CCD camera which acts as a square-

law receiver and is responsible for mixing the spectra to produce the cross products. The output 

from the CCD camera is sent to the A-law/μ-law digital or analog receiver. After nonlinear A-

law or μ-law Dynamic Range compression deconvolution the output is sent to a spatial light 

modulator (SLM), the output from SLM is then Fourier transformed via a lens to produce the 

processed output. As shown explicitly in the theoretical section, the CCD camera is responsible 

for combining the Fourier transforms of the impulse response and the distorted image to 

compensate for the phase distortion. And then the A-law/μ-law nonlinear transformation is 
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responsible for enhancing high frequencies, and hence noise reduction and signal to noise ratio 

enhancement. The input-output nonlinear transfer functions of the A-law and the μ-law receivers 

are respectively defined as2  
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and E is the input information. In a joint Fourier processor E is always larger than 0 and hence 

sgn (E) is always 1. The parameters A and μ controls the amount of compression. In the standard 

systems A=87.6 and μ=255.  

Figures 2(A) and 2(B) show the input-output transfer functions of A-law and μ-law encoders 

defined in equations 1 and 2 respectively. Three different values of A and μ has been selected in 

order to show the changes in nonlinearity performance of the encoders. The values of A=87.56 

and μ= 255 are the standard values used in telecommunication systems.  

Figure 3 shows the proposed architecture of A-law/μ-law joint Fourier processor for Adaptive 

Optics applications. The reference and the signal information correspond to a point source (guide 

star or multi guide stars8) and the object of interest are passing through the distortion medium 

which produce h + f*h joint image where “h” is the impulse response of the distortion medium, f 

is the object, “f*h” is the distorted image and asterisk “*” is the convolution symbol. This 

information is sent to a spatial light modulator and is processed via the joint Fourier processor 

shown in figure 1.  
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Theory 

In this section we analyze the deconvolution orders using the nonlinear transform method3. In the 

joint Fourier processor shown in figure 3, described in prior section, the joint Fourier transform 

energy captured by the CCD camera is given by 

2
),(),(1),( yxyxyx SR

f
E νννν

λ
νν +=       (4) 

where R is the Fourier transform of the reference information (r), S is the Fourier transform of 

the signal information (s) and νx and νy are the spatial frequency coordinates.  

Assume an input-output nonlinear transfer function of a processor, f(E), with Fourier transform 

of F(ω) where E is the energy and ω is its complement frequency variable. This function can be 

demonstrated in its summation series format as: 
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where y0 is the separation factor between the reference and signal information, ΦR, ΦS are the 

reference and signal phases and Hk (νx, νy) is the weighting factors which is given by  
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π
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2
, 22 += ∫

∞
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    (6)  

εk is the Neumann factor (εk = 1 for k=0 and εk=2 for k> 0).  

Therefore theoretically as long as the F(ω), Fourier transform, of an energy function is known, 

substituting the F(ω) in Eq. 6 would give the correlation9 or deconvolution weighting orders.  

According to Eq. 6, in order to calculate the deconvolution weighting orders of a nonlinear 

transfer function, the Fourier transform of the input-output nonlinear transfer function is needed. 

In this section firstly the Fourier transform of the input-output nonlinear transfer function of both 

μ-law and A-law defined in equations 1 and 2 are calculated. 
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In order to calculate the Fourier transform of the above functions, it is more convenient to first 

expand both of these nonlinear transfer functions into their power-law expansion expressions as 

follows: 
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where Gp is a generic parameter that corresponds to either μ or A and Gc is a generic constant 

defined as 
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f(Gp) is  a generic constant which is given by: 
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SNn is the generic negative nonlinear saturation function defined as: 

[ ]npPGpnNG EGSEGS
pp

)(1)( −=        (10) 

Where SPGp(GpE) is a positive nonlinear saturation function which is defined for the μ-law and 

A-law encoders respectively as:   
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Each order of the negative saturation function can be fractionally expanded to its first order 

expansion as: 
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Where  
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By combining all equations and knowing the Fourier transform of a negative function as: 

( ) ( ) ( )0expexpsgn Ei
G

i
G

iF
pp

ωωπωω ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ,      (14) 

And substituting F(ω) in equation 3, the weighting orders for the first and third order of the A-

law power-law expansion respectively are: 
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And the weighting factors for the first and third order of the μ-law power-law expansion 

respectively are: 
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Therefore having known each order’s weighting factors and combining all together, we can 

calculate the total weighting factors for both A-law and μ-law encoders as: 
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where Gc=1 for A-law and Gc=0 for μ-law. Substituting equation 20 in equation 5 would show 

the conversion of the A-law and μ-law input-output transfer functions defined in equations 1 and 

2 into a summation series as follow: 
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For more details on calculating the above equations, see the Appendix. 

In order to generate the gray level recovered image, the above equation should be multiplied to a 

statistical average (generic) filter, Fs(νx, νy)7. The A-law and μ-law joint Fourier processor can be 

used either for correlation and convolution, or other signal processing functionalities. Before 

going further in the simulation, the order expansion in equation 21 used for correlation and 

convolution is discussed. In the correlation joint Fourier processor, the signal is expected to 

include the reference matching template, other non-matching signals, clutter and noise8. For the 

most simple case, where the reference and signal information are the same, ΦR= ΦS, f (E) simply 

consists of a sinusoidal grating with periods of 2ky0, where k is the grating period. The Fourier 

transform of equation 21 consists of a periodic delta function convolved with the orders 

expansion producing the appropriate results for the correlation processing functionality, while for 

the convolution processing discussed below, only the first order expansion is suitable to perform 

the functionality. Assume that the signal Fourier spectra is HF and the distortion Fourier 

transform is H. In the deconvolution before the compression that happens in CCD camera two 

terms of HFH* and H*F*H are produced. These terms after Dynamic Range Compression 



 11

produce several orders in equation 20. The signal phase ΦS= ΦH + ΦF and the reference phase is 

ΦR= ΦH. For image restoration, the k (ΦR- ΦS) = ±kΦF. This condition is satisfied only for the 

first order. The other orders have phases of ±kΦF, which produce high order deconvolution terms 

of the restored image convolved with coefficients. The higher orders can clutter the restored 

images therefore it is important to know the energy contribution of these orders compare to the 

first order.  

Figure 4 shows plots for the first three order joint spectra coefficient (A) for A-law (B) for the μ-

law. The dashed line is for k=1, the dotted line is for k=2 and the dashed dotted line is for k=3.  

For small A, the weighting coefficient value is higher for lower orders. This is evident from the 

plots, at A=10-3 the first order coefficient value is 2.086 while the second and the third orders are 

0.62. The reason for having the first order higher than the others at small values of A is that the 

A-law joint Fourier processor is almost linear for small A’s (see the figure 3(A), f(E) as a 

function E). Therefore at small A values the A-law joint Fourier processor functions as a 

conventional processor (described in chapter 1) and does not introduce higher orders. 

As the A value increases, the second order increases to higher values than the third order. All the 

coefficient are maximized at the same value of A= 0.371. After the maximum point up to almost 

A=3, as A increases the coefficient values decrease. After the plots intersection, the third order 

starts increasing to the higher values than the first and second orders while the second order 

remains the intermediate and the first order becomes the lowest. 

At A=87.6, the first, the second and the third orders values are 1.199, 1.6 and 1.97 respectively. 

This yields that the signal to clutter ratio results from high orders interference could be as low as 

0.2232. Therefore enough separation between the reference and the signal information is 

essential in order to designate separate areas for the orders contributions.   
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The μ-law coefficients plots illustrated in figure 4(B), showed both similarity and dissimilarities 

to the A-law coefficients. The μ-law plots show similar results as the A-law’s plots where for 

small A’s, the first order had the larger value than the second and the third.  

Similar to the A-law plots, the second order coefficients became larger than the third order in the 

range between μ=10-2 and 2. In contrast to the A-law plots where the coefficients take their 

maximum values, the μ-law coefficients drop continuously. Similar to the A-law where all 

coefficients intersected at some A value, the μ-law coefficients also intersect almost at μ=5. 

Similar to the A-law plots, after the intersection, the third order starts increasing to the higher 

values than the first and second orders, the second order remains the intermediate and the first 

order becomes the lowest. 

The μ-law has similar behavior as the A-law: for small μ the joint Fourier processor, shown in 

figure 3(B), is almost linear (f(E) as a function E) and hence at small μ values the μ-law joint 

Fourier processor is a conventional processor and does not introduce higher orders. 

Similar to the A-law at the standard value of μ =255, the first, the second and the third orders 

values are 2.268, 3.743 and 5.053 respectively. This yields that the signal to clutter ratio results 

from high orders interference could be as low as 0.1301. Therefore for the μ-law also enough 

separation between the reference and the signal information is essential in order to designate 

separate areas for the orders contributions.   

The similarities and dissimilarities in the coefficients plots of the μ-law and A-law are attributed 

to the similarities and dissimilarities in the negative saturation nonlinearity of the A-law and the 

μ-law used in the analysis. Comparing the negative saturation nonlinearity of the A-law with the 

negative saturation nonlinearity of the μ-law shows that both the numerators are similar, except 
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the μ-law numerator has extra nonlinear term. This comparison can be clearer from these 

equations plots shown in figures 5(A) and 5(B) for A-law and μ-law respectively.  

Figure 5(A) shows a secondary maximum for the A-law negative saturation nonlinearity around 

AE(νx,νy)=1.5 which could be the reason for having maximum values for the A-law coefficients 

(figure 4(A)). While for the μ-law shown in figure 5(B) the negative saturation nonlinearity 

drops continuously and hence there is no maximum value for the μ-law coefficients as it was 

illustrated in figure 4(B).  

The similarities and dissimilarities in the coefficients plots of the A-law and μ-law from their 

negative saturation nonlinearity functions point of view were discussed. However the A-law 

coefficients plots for A≥1 values (Fig. 4(A)) with the μ-law coefficients plots (Fig. 4(B)), can be 

considered very similar.  This can be explained from the A-law and μ-law input-output nonlinear 

transfer functions plots shown in figure 3 that their functionalities are almost the same for A≥1 

and μ≥0 values.  

Computer Simulation 

Two forms of computer simulation were conducted: direct and indirect. In the direct simulation 

both of the noisy blurred information and the aberration impulse response were set in a zero 

array with a separation of almost 256 pixels from their centers. Both were joint Fourier 

transformed, squared and nonlinearly filtered. In the indirect deconvolution simulation only the 

first order expansion (k=1) from equation 21 was used. Other orders are irrelevant to be used for 

deconvolution purposes however for correlation application these orders can be used. Each of 

these simulations represents different view of the system performance. None represent what 

exactly could be the case in an optical system.  
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In direct simulation, contributions of all orders can lead to orders aliasing; while only the first 

deconvolution order is needed to simulate the deconvolution through an optical system. Aliasing 

is a simulation artifact and is not applicable in optical systems; in particular aliasing from high 

orders which interfere with the output result.  

In indirect simulation, both the high orders aliasing and interference contributions are removed. 

Since the aliasing is a simulation artifact, it can be removed however the high orders interference 

exists in optical systems. Therefore, none of these forms of simulations predicts the exact optical 

system results. However the combination of direct and indirect simulations should illustrate a 

good prediction for the deconvolution results.  

In the direct simulation a joint image of a 2 x 2 pixels point source and a 128x128 pixels Lena 

face were located in a 1024 x 1024 zeros (null) array while they are separated by 256 pixels 

center-to-center.  The joint input is convolved with an aberration function to generate the joint 

blurred image and the blur impulse response. The noise is created by a random-number 

generator, which produces white Gaussian noise with zero mean and a variance of 1 and is added 

to the blurred image. Figure 6 shows the simulation results for motion aberration. The motion 

impulse response was a 2 x 50 pixels rectangle. Figure 6(A) is the joint image of motion impulse 

response and the noisy blurred image with signal to noise ratio 5, 6(A’) is the gray level 

recovered image using the A-law deconvolution for A=87.6 and 6(A”) is the gray level 

recovered image using the μ-law deconvolution for μ=255. The B and C rows are the same 

sequence as the A row except for signal to noise ratios 1 and 0.1 respectively.  

Figures 7, 8 and 9 are all the same sequence as the figure 6 except for different aberration 

functions the atmospheric turbulence, misfocusing and phase respectively.  
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The atmospheric turbulence was defined in reference 10 as 
6/522 )(),( yxeH yx

ννβνν +−= (22) 

where β=0.0025. The misfocusing impulse response was considered as a circle with a diameter 

of 20 pixels of ones. The phase aberration impulse response was a uniformly distributed random 

phase-only function of 128 x 128 pixels.  

The capability of the proposed system in image recovery without high orders interference was 

also simulated using equations 15-18 substituted in equation 20. In the direct simulation the same 

128 x 128 pixels Lena face is located in a 512 x 512 zeros (null) array as an input image. This 

input is blurred using the same blur functions described in indirect simulation. The same noise 

function also was added to the blurred image.   

Figures (10, 10’), (11, 11’), (12, 12’) and (13, 13’) show the simulation results based on the first 

order nonlinear transform method expansion presented in equation 20.  

The non-primed figures represent the results of deconvolution for the following blur functions 

respectively: motion, atmospheric, misfocusing and phase. For all non-primed figures (A) is the 

noisy blurred input with SNR= 5, (A’) and (A”) are the corresponding recovered images via the 

A-law and the µ-law decovolutions respectively. The B and C rows are sequentially the same as 

the A row for SNR=1 and SNR=0.1 respectively.  

The primed figures represent comparative study of the A-law and µ-law deconvolution with both 

of the Wiener and the Inverse filters. In all of these figures (A) represents the recovered image 

via the A-law deconvolution for SNR=1 (the (B’) images in the non-primed figures), (B) is the 

recovered image using Wiener filter, with the expected value of F, (C) is the recovered image 

using Inverse filtering and (D) is the recovered image using Wiener filter, with the exact value of 

F. As it is evident in C’s figures (primed figures), the Inverse filter was incapable of either 

recovering or even detecting the image. In these results noise is simply covering the whole array. 
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By comparing the A’s with the D’s, it is clear that for all the blur functions tested here the image 

recovery of noisy blurred signal with SNR=1 via the A-law deconvolution was always better 

(with a generic shape of the low pass filter or the expected value of F) than the Wiener filter with 

the exact value of  F. When the exact value of F was replaced by a generic shape of the low pass 

filter or the expected value of F like what it was used in the A-law results, the Wiener filter failed 

as it is evident in B for all the primed figures. 

Both the A-law and the µ-law deconvolutions results showed the possibility of recovering the 

noisy blurred image for all common forms of blur functions tested here with SNR as low as 0.1. 

They are associated with noise conversion from low frequencies to high frequencies. This 

frequency conversion leads for further enhancement of the signal to noise ratio through 

spreading the noise over the entire array. While in image recovery via the Wiener filter, the noise 

remains nearly concentrated on the original noisy image area.  

Conclusion 

This paper introduced for the first time the dynamic range compression deconvolution. Here the 

dynamic range compression deconvolution implementation via both the A-law and the μ-law 

encoders (used in telecommunication systems) was proposed. In this approach: (a) the phase 

information was restored via the combination of the square receiving with the dynamic range 

compression and (b) the amplitude information (gray level image) was restored through using 

lowpass filtering.  

The dynamic range compression simultaneously enhanced the signal to noise ratio as well as the 

higher frequencies relative to the lower frequencies which leads to increase noise frequencies. 

The deconvolution theory of both encoders were developed using the nonlinear transfer method. 
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The simulation results showed better performance of A-law than the μ-law. Both A-law and μ-

law outperformed the Wiener and the Inverse filters.  

The A-law and the μ-law encoders are used in both digital and analog systems. The dynamic 

range compression severity is controlled via the compression parameters A and μ for A-law and 

the μ-law respectively. The simulation results were improved when these parameters increased.  
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APPENDIX  

The Input-Output nonlinear transfer function of the A-law encoder is  

)ln(1
)ln(1

)(
A
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xg
+

+
=          (A1) 

where in joint transform processor, x corresponds to 

 
2

),(),(),( yxyxyx SRE νννννν +=        (A2) 

R is the Fourier transform of the reference information and S is the Fourier transform of the 

signal information. Accordingly equation A1 can be rewritten as 
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The nonlinear transfer function of A-law encoder can be expanded into summation of power-law 

saturation functions 
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 S denoted for saturation, P denotes for positive saturation functionality and A is for A-law. 

 Alternatively the above expansions via positive saturation nonlinearity can be replaced by 

expansions that consist of negative saturation nonlinearity S NA (AE): 
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where the nth order of negative saturation nonlinearity is defined as: 
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The first three terms of the negative saturation nonlinearities are 
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In the most general form each of the negative nonlinear saturation functions can be expanded 

into the following form:  
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For example the third order power-law saturation functions it can be expanded in the following 

form: 
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Where  

AEx =                          (A11.1) 

2

23
2
3

1 εε
+−=

−Aa         (A11.2) 

2

4
0 ε

−=Aa          (A11.3) 

2

23
2
3

1 εε
++=

+Aa          (A11.4) 

 



 21

Similarly for μ-law, the most general form each of the negative nonlinear saturation functions 

can be expanded into the following form:  
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For example the third order power-law saturation functions it can be expanded in the following 

form: 
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Where 

Ex μ=           (A13.1) 
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For the first order negative saturation input-output transfer function: 
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using the nonlinear transfer method3, the weighing factor for kth-order is given by  
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Where Gp is a generic parameter which could be either the beam ratio m in two-beam coupling, 

the A or μ in A-law or the μ-law power-law expansions, and the joint spectra momentum are 

defined as  
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According to the above equation the zero order is 
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HR0 (νx,νy) corresponds to the average rectification efficiency of the joint spectra as a result of 

processing within a device that have negative saturation nonlinearity. And also the kth order 

power which corresponds to the order of the coefficient amplitude normalized to the processor 

amplitude rectification efficiency is defined as 
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Then equation A15 can be represented in the simplest form as  
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For the small incremental change in the value of A, from A to be A/(1-ε) where ε is a small 

number, the HR0 (νx,νy) the rectification efficiency is changed to: 
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Where IA and OA defined as: 
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Similarly, the coefficient power (the kth order normalized coefficients) can be approximated as: 
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Where JA, QA and PA are defined respectively as: 
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Combining the contribution of both the envelope and normalized convolution orders yields that 

that the weighted convolution orders as results of incremental change in A to be: 
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which can be rewritten in the following form  
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Where HRk (νx, νy, 0) is the value of HRk (νx, νy, ± ε) when ε=0, a1=IA-JA and b1=OA-QA- JA IA. 

It was shown in Eq. A11, the expansion of the third order negative saturation nonlinearity as the 

following format: 
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If the contribution of the HRk (νx, νy,± ε) from Eq. A23 for all the terms is substituted in above 

fractional expansion, the contribution of the third order negative coefficient is given by: 
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Substituting the HRk (νx, νy, ± ε) values from equation A23 yields that  
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Substituting all the parameters within the above equation yields that 
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Using the relationship in equation F2 the above equation can be simplified to 
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For the analysis of third and high order power-law negative saturation functionality of the μ-law, 

the same steps as in the analysis of the A-law was proceeded. The deconvolution orders can be 

approximated as  
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The Eq. A29 can be simplified to the following format 
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Figures Captions: 

Figure 1. Joint Fourier processor via A-law/µ-law 

Figure 2. (A) A-law input-output transfer function for A=1, 5 and 87. 56, (B) µ-law input-output 

transfer function µ= 0, 5 and 255 

Figure 3. Adaptive Optics imaging system for image restoration using A-law/µ-law 

Figure 4. Joint spectra coefficient for (A) A-law and (B) μ-law 

Figure 5. Third order negative saturation nonlinearity for (A) A-law and (B) μ-law 

Figure 6. Motion aberration simulation results, (A) the joint image of motion impulse response 

and the noisy blurred image with signal to noise ratio 5, (A’) the gray level recovered image 

using the A-law deconvolution for A=87.6 and (A”) the gray level recovered image using the μ-

law deconvolution for μ=255. The B and C rows are the same sequence as the A row except for 

signal to noise ratios 1 and 0.1 respectively.  

Figure 7. Atmospheric turbulence simulation results (A) the joint image of motion impulse 

response and the noisy blurred image with signal to noise ratio 5, (A’) the gray level recovered 

image using the A-law deconvolution for A=87.6 and (A”) the gray level recovered image using 

the μ-law deconvolution for μ=255. The B and C rows are the same sequence as the A row 

except for signal to noise ratios 1 and 0.1 respectively.  

Figure 8. Misfocusing aberration simulation results (A) the joint image of misfocusing impulse 

response and the noisy blurred image with signal to noise ratio 5, (A’) the gray level recovered 

image using the A-law deconvolution for A=87.6 and (A”) the gray level recovered image using 

the μ-law deconvolution for μ=255. The B and C rows are the same sequence as the A row 

except for signal to noise ratios 1 and 0.1 respectively.  
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Figure 9. Phase-only aberration simulation results (A) the joint image of Phase-only impulse 

response and the noisy blurred image with signal to noise ratio 5, (A’) the gray level recovered 

image using the A-law deconvolution for A=87.6 and (A”) the gray level recovered image using 

the μ-law deconvolution for μ=255. The B and C rows are the same sequence as the A row 

except for signal to noise ratios 1 and 0.1 respectively.  

Figure 10. Motion aberration indirect simulation results (A) the noisy blurred input with SNR= 

5, (A’) and (A”) are the corresponding recovered images via the A-law and the µ-law 

decovolutions respectively. The B and C rows are sequentially the same as the A row for SNR=1 

and SNR=0.1 respectively.  

Figure 10’. A-law deconvolution result for the motion aberration compare to Wiener and 

Inverese filters result (A) the recovered image via the A-law deconvolution for SNR=1, (B) the 

recovered image using Wiener filter, with the expected value of F, (C) the recovered image using 

Inverse filtering and (D) is the recovered image using Wiener filter, with the exact value of F 

Figure 11. Atmospheric turbulence indirect simulation results (A) the noisy blurred input with 

SNR= 5, (A’) and (A”) are the corresponding recovered images via the A-law and the µ-law 

decovolutions respectively. The B and C rows are sequentially the same as the A row for SNR=1 

and SNR=0.1 respectively. 

Figure 11’. A-law deconvolution result for the Atmospheric turbulence compare to Wiener and 

Inverse filters result (A) the recovered image via the A-law deconvolution for SNR=1, (B) the 

recovered image using Wiener filter, with the expected value of F, (C) the recovered image using 

Inverse filtering and (D) is the recovered image using Wiener filter, with the exact value of F 

Figure 12. Misfocusing aberration indirect simulation results (A) the noisy blurred input with 

SNR= 5, (A’) and (A”) are the corresponding recovered images via the A-law and the µ-law 
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decovolutions respectively. The B and C rows are sequentially the same as the A row for SNR=1 

and SNR=0.1 respectively. 

Figure 12’. A-law deconvolution result for the Misfocusing aberration compare to Wiener and 

Inverese filters result (A) the recovered image via the A-law deconvolution for SNR=1, (B) the 

recovered image using Wiener filter, with the expected value of F, (C) the recovered image using 

Inverse filtering and (D) is the recovered image using Wiener filter, with the exact value of F 

Figure 13. Phase-only aberration indirect simulation results (A) the noisy blurred input with 

SNR= 5, (A’) and (A”) are the corresponding recovered images via the A-law and the µ-law 

decovolutions respectively. The B and C rows are sequentially the same as the A row for SNR=1 

and SNR=0.1 respectively. 

Figure 13’. A-law deconvolution result for the Phase-only aberration compare to Wiener and 

Inverse filters result (A) the recovered image via the A-law deconvolution for SNR=1, (B) the 

recovered image using Wiener filter, with the expected value of F, (C) the recovered image using 

Inverse filtering and (D) is the recovered image using Wiener filter, with the exact value of F 
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